3.9.74 \(\int \frac {\cot ^{\frac {5}{2}}(c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx\) [874]

3.9.74.1 Optimal result
3.9.74.2 Mathematica [A] (verified)
3.9.74.3 Rubi [A] (verified)
3.9.74.4 Maple [C] (warning: unable to verify)
3.9.74.5 Fricas [B] (verification not implemented)
3.9.74.6 Sympy [F(-1)]
3.9.74.7 Maxima [F]
3.9.74.8 Giac [F(-2)]
3.9.74.9 Mupad [F(-1)]

3.9.74.1 Optimal result

Integrand size = 25, antiderivative size = 338 \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx=\frac {\arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a-b)^{5/2} d}+\frac {\text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a+b)^{5/2} d}+\frac {2 b^2 \left (7 a^2+8 b^2\right )}{3 a^3 \left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} (a+b \tan (c+d x))^{3/2}}+\frac {4 b \sqrt {\cot (c+d x)}}{a^2 d (a+b \tan (c+d x))^{3/2}}-\frac {2 \cot ^{\frac {3}{2}}(c+d x)}{3 a d (a+b \tan (c+d x))^{3/2}}+\frac {4 b^2 \left (4 a^4+15 a^2 b^2+8 b^4\right )}{3 a^4 \left (a^2+b^2\right )^2 d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}} \]

output
arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^( 
1/2)*tan(d*x+c)^(1/2)/(I*a-b)^(5/2)/d+arctanh((I*a+b)^(1/2)*tan(d*x+c)^(1/ 
2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/(I*a+b)^(5/2) 
/d+4/3*b^2*(4*a^4+15*a^2*b^2+8*b^4)/a^4/(a^2+b^2)^2/d/cot(d*x+c)^(1/2)/(a+ 
b*tan(d*x+c))^(1/2)-2/3*cot(d*x+c)^(3/2)/a/d/(a+b*tan(d*x+c))^(3/2)+2/3*b^ 
2*(7*a^2+8*b^2)/a^3/(a^2+b^2)/d/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(3/2)+4* 
b*cot(d*x+c)^(1/2)/a^2/d/(a+b*tan(d*x+c))^(3/2)
 
3.9.74.2 Mathematica [A] (verified)

Time = 6.38 (sec) , antiderivative size = 504, normalized size of antiderivative = 1.49 \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx=\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)} \left (-\frac {2}{3 a d \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}-\frac {2 \left (-\frac {6 b}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}-\frac {3 \left (\frac {a b \sqrt {\tan (c+d x)}}{3 (i a-b) (a+b \tan (c+d x))^{3/2}}+\frac {16 b^2 \sqrt {\tan (c+d x)}}{3 a (a+b \tan (c+d x))^{3/2}}-\frac {a b \sqrt {\tan (c+d x)}}{3 (i a+b) (a+b \tan (c+d x))^{3/2}}+\frac {32 b^2 \sqrt {\tan (c+d x)}}{3 a^2 \sqrt {a+b \tan (c+d x)}}-\frac {-\frac {3 \sqrt [4]{-1} a^2 \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(-a+i b)^{3/2}}+\frac {(5 a-2 i b) b \sqrt {\tan (c+d x)}}{(a-i b) \sqrt {a+b \tan (c+d x)}}}{3 (i a+b)}+\frac {-\frac {3 \sqrt [4]{-1} a^2 \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(a+i b)^{3/2}}+\frac {(5 a+2 i b) b \sqrt {\tan (c+d x)}}{(a+i b) \sqrt {a+b \tan (c+d x)}}}{3 (i a-b)}\right )}{2 a d}\right )}{3 a}\right ) \]

input
Integrate[Cot[c + d*x]^(5/2)/(a + b*Tan[c + d*x])^(5/2),x]
 
output
Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(-2/(3*a*d*Tan[c + d*x]^(3/2)*(a + b 
*Tan[c + d*x])^(3/2)) - (2*((-6*b)/(a*d*Sqrt[Tan[c + d*x]]*(a + b*Tan[c + 
d*x])^(3/2)) - (3*((a*b*Sqrt[Tan[c + d*x]])/(3*(I*a - b)*(a + b*Tan[c + d* 
x])^(3/2)) + (16*b^2*Sqrt[Tan[c + d*x]])/(3*a*(a + b*Tan[c + d*x])^(3/2)) 
- (a*b*Sqrt[Tan[c + d*x]])/(3*(I*a + b)*(a + b*Tan[c + d*x])^(3/2)) + (32* 
b^2*Sqrt[Tan[c + d*x]])/(3*a^2*Sqrt[a + b*Tan[c + d*x]]) - ((-3*(-1)^(1/4) 
*a^2*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[ 
c + d*x]]])/(-a + I*b)^(3/2) + ((5*a - (2*I)*b)*b*Sqrt[Tan[c + d*x]])/((a 
- I*b)*Sqrt[a + b*Tan[c + d*x]]))/(3*(I*a + b)) + ((-3*(-1)^(1/4)*a^2*ArcT 
an[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]] 
)/(a + I*b)^(3/2) + ((5*a + (2*I)*b)*b*Sqrt[Tan[c + d*x]])/((a + I*b)*Sqrt 
[a + b*Tan[c + d*x]]))/(3*(I*a - b))))/(2*a*d)))/(3*a))
 
3.9.74.3 Rubi [A] (verified)

Time = 2.20 (sec) , antiderivative size = 384, normalized size of antiderivative = 1.14, number of steps used = 22, number of rules used = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.840, Rules used = {3042, 4729, 3042, 4052, 27, 3042, 4132, 27, 3042, 4133, 27, 3042, 4132, 27, 3042, 4099, 3042, 4098, 104, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^{\frac {5}{2}}(c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cot (c+d x)^{5/2}}{(a+b \tan (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {1}{\tan (c+d x)^{5/2} (a+b \tan (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 4052

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 \int \frac {3 \left (2 b \tan ^2(c+d x)+a \tan (c+d x)+2 b\right )}{2 \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{5/2}}dx}{3 a}-\frac {2}{3 a d \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\int \frac {2 b \tan ^2(c+d x)+a \tan (c+d x)+2 b}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{5/2}}dx}{a}-\frac {2}{3 a d \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\int \frac {2 b \tan (c+d x)^2+a \tan (c+d x)+2 b}{\tan (c+d x)^{3/2} (a+b \tan (c+d x))^{5/2}}dx}{a}-\frac {2}{3 a d \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 4132

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {-\frac {2 \int -\frac {a^2-8 b^2-8 b^2 \tan ^2(c+d x)}{2 \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{5/2}}dx}{a}-\frac {4 b}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}}{a}-\frac {2}{3 a d \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {\int \frac {a^2-8 b^2-8 b^2 \tan ^2(c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{5/2}}dx}{a}-\frac {4 b}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}}{a}-\frac {2}{3 a d \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {\int \frac {a^2-8 b^2-8 b^2 \tan (c+d x)^2}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{5/2}}dx}{a}-\frac {4 b}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}}{a}-\frac {2}{3 a d \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 4133

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {\frac {2 \int \frac {3 a^4-3 b \tan (c+d x) a^3-14 b^2 a^2-16 b^4-2 b^2 \left (7 a^2+8 b^2\right ) \tan ^2(c+d x)}{2 \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{3 a \left (a^2+b^2\right )}-\frac {2 b^2 \left (7 a^2+8 b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}}{a}-\frac {4 b}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}}{a}-\frac {2}{3 a d \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {\frac {\int \frac {3 a^4-3 b \tan (c+d x) a^3-14 b^2 a^2-16 b^4-2 b^2 \left (7 a^2+8 b^2\right ) \tan ^2(c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{3 a \left (a^2+b^2\right )}-\frac {2 b^2 \left (7 a^2+8 b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}}{a}-\frac {4 b}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}}{a}-\frac {2}{3 a d \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {\frac {\int \frac {3 a^4-3 b \tan (c+d x) a^3-14 b^2 a^2-16 b^4-2 b^2 \left (7 a^2+8 b^2\right ) \tan (c+d x)^2}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{3 a \left (a^2+b^2\right )}-\frac {2 b^2 \left (7 a^2+8 b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}}{a}-\frac {4 b}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}}{a}-\frac {2}{3 a d \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 4132

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {\frac {\frac {2 \int \frac {3 \left (a^4 \left (a^2-b^2\right )-2 a^5 b \tan (c+d x)\right )}{2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}-\frac {4 b^2 \left (4 a^4+15 a^2 b^2+8 b^4\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{3 a \left (a^2+b^2\right )}-\frac {2 b^2 \left (7 a^2+8 b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}}{a}-\frac {4 b}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}}{a}-\frac {2}{3 a d \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {\frac {\frac {3 \int \frac {a^4 \left (a^2-b^2\right )-2 a^5 b \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}-\frac {4 b^2 \left (4 a^4+15 a^2 b^2+8 b^4\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{3 a \left (a^2+b^2\right )}-\frac {2 b^2 \left (7 a^2+8 b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}}{a}-\frac {4 b}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}}{a}-\frac {2}{3 a d \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {\frac {\frac {3 \int \frac {a^4 \left (a^2-b^2\right )-2 a^5 b \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}-\frac {4 b^2 \left (4 a^4+15 a^2 b^2+8 b^4\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{3 a \left (a^2+b^2\right )}-\frac {2 b^2 \left (7 a^2+8 b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}}{a}-\frac {4 b}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}}{a}-\frac {2}{3 a d \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 4099

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2}{3 a d \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}-\frac {-\frac {4 b}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}+\frac {-\frac {2 b^2 \left (7 a^2+8 b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {-\frac {4 b^2 \left (4 a^4+15 a^2 b^2+8 b^4\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {1}{2} a^4 (a-i b)^2 \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a^4 (a+i b)^2 \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}}{a}}{a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2}{3 a d \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}-\frac {-\frac {4 b}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}+\frac {-\frac {2 b^2 \left (7 a^2+8 b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {-\frac {4 b^2 \left (4 a^4+15 a^2 b^2+8 b^4\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {1}{2} a^4 (a-i b)^2 \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a^4 (a+i b)^2 \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}}{a}}{a}\right )\)

\(\Big \downarrow \) 4098

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2}{3 a d \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}-\frac {-\frac {4 b}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}+\frac {-\frac {2 b^2 \left (7 a^2+8 b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {-\frac {4 b^2 \left (4 a^4+15 a^2 b^2+8 b^4\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^4 (a+i b)^2 \int \frac {1}{(1-i \tan (c+d x)) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}+\frac {a^4 (a-i b)^2 \int \frac {1}{(i \tan (c+d x)+1) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}}{a}}{a}\right )\)

\(\Big \downarrow \) 104

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2}{3 a d \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}-\frac {-\frac {4 b}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}+\frac {-\frac {2 b^2 \left (7 a^2+8 b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {-\frac {4 b^2 \left (4 a^4+15 a^2 b^2+8 b^4\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^4 (a-i b)^2 \int \frac {1}{\frac {(i a-b) \tan (c+d x)}{a+b \tan (c+d x)}+1}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {a^4 (a+i b)^2 \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}}{a}}{a}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2}{3 a d \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}-\frac {-\frac {4 b}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}+\frac {-\frac {2 b^2 \left (7 a^2+8 b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {-\frac {4 b^2 \left (4 a^4+15 a^2 b^2+8 b^4\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^4 (a+i b)^2 \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {a^4 (a-i b)^2 \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}}{a}}{a}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2}{3 a d \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}-\frac {-\frac {4 b}{a d \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}+\frac {-\frac {2 b^2 \left (7 a^2+8 b^2\right ) \sqrt {\tan (c+d x)}}{3 a d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {-\frac {4 b^2 \left (4 a^4+15 a^2 b^2+8 b^4\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^4 (a-i b)^2 \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}+\frac {a^4 (a+i b)^2 \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}\right )}{a \left (a^2+b^2\right )}}{3 a \left (a^2+b^2\right )}}{a}}{a}\right )\)

input
Int[Cot[c + d*x]^(5/2)/(a + b*Tan[c + d*x])^(5/2),x]
 
output
Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(-2/(3*a*d*Tan[c + d*x]^(3/2)*(a + b 
*Tan[c + d*x])^(3/2)) - ((-4*b)/(a*d*Sqrt[Tan[c + d*x]]*(a + b*Tan[c + d*x 
])^(3/2)) + ((-2*b^2*(7*a^2 + 8*b^2)*Sqrt[Tan[c + d*x]])/(3*a*(a^2 + b^2)* 
d*(a + b*Tan[c + d*x])^(3/2)) + ((3*((a^4*(a - I*b)^2*ArcTan[(Sqrt[I*a - b 
]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a - b]*d) + (a^4* 
(a + I*b)^2*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + 
d*x]]])/(Sqrt[I*a + b]*d)))/(a*(a^2 + b^2)) - (4*b^2*(4*a^4 + 15*a^2*b^2 + 
 8*b^4)*Sqrt[Tan[c + d*x]])/(a*(a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]]))/(3 
*a*(a^2 + b^2)))/a)/a)
 

3.9.74.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4052
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*(a + b*Tan[e + f*x])^(m + 1)*((c 
+ d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d))), x] + Simp[1 
/((m + 1)*(a^2 + b^2)*(b*c - a*d))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + 
d*Tan[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - 
 a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x], x], x] / 
; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] 
 && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || Integ 
erQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4098
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[A^2/f   Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e + f* 
x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[A^2 + B^2, 0]
 

rule 4099
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A + I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 - I*T 
an[e + f*x]), x], x] + Simp[(A - I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d 
*Tan[e + f*x])^n*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A 
, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2 + B^2, 
0]
 

rule 4132
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + 
 f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + 
b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2))   Int[(a + b*Tan[e + 
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d* 
(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d 
)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Ta 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ 
[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && 
!(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4133
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(A*b^2 + a^2*C)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n 
+ 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Simp[1/((m + 1)*(b*c - a*d) 
*(a^2 + b^2))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Sim 
p[A*(a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2)) - a*C*(b*c*(m + 1) + a*d*(n 
 + 1)) - (m + 1)*(b*c - a*d)*(A*b - b*C)*Tan[e + f*x] - d*(A*b^2 + a^2*C)*( 
m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, 
 x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m 
, -1] &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
3.9.74.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 4 vs. order 3.

Time = 18.10 (sec) , antiderivative size = 19915, normalized size of antiderivative = 58.92

method result size
default \(\text {Expression too large to display}\) \(19915\)

input
int(cot(d*x+c)^(5/2)/(a+b*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
result too large to display
 
3.9.74.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 11729 vs. \(2 (284) = 568\).

Time = 2.65 (sec) , antiderivative size = 11729, normalized size of antiderivative = 34.70 \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

input
integrate(cot(d*x+c)^(5/2)/(a+b*tan(d*x+c))^(5/2),x, algorithm="fricas")
 
output
Too large to include
 
3.9.74.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate(cot(d*x+c)**(5/2)/(a+b*tan(d*x+c))**(5/2),x)
 
output
Timed out
 
3.9.74.7 Maxima [F]

\[ \int \frac {\cot ^{\frac {5}{2}}(c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx=\int { \frac {\cot \left (d x + c\right )^{\frac {5}{2}}}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(cot(d*x+c)^(5/2)/(a+b*tan(d*x+c))^(5/2),x, algorithm="maxima")
 
output
integrate(cot(d*x + c)^(5/2)/(b*tan(d*x + c) + a)^(5/2), x)
 
3.9.74.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx=\text {Exception raised: TypeError} \]

input
integrate(cot(d*x+c)^(5/2)/(a+b*tan(d*x+c))^(5/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(con 
st gen &
 
3.9.74.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x)}{(a+b \tan (c+d x))^{5/2}} \, dx=\int \frac {{\mathrm {cot}\left (c+d\,x\right )}^{5/2}}{{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{5/2}} \,d x \]

input
int(cot(c + d*x)^(5/2)/(a + b*tan(c + d*x))^(5/2),x)
 
output
int(cot(c + d*x)^(5/2)/(a + b*tan(c + d*x))^(5/2), x)